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ABSTRACT
/7589

The recently determined temperature dependence of the static
oxygen polarizability anisotropy in tetragonal BaTiC3 is incorporated
in the Slater-Devonshire molecular theory of BaTiO3, The displace-
able-Ti model is redefined in terms of relative ion shifts, and it
is shown that this model reproduces the electrostatic properties of
the actual case and is mathematically identical to the Slater model,
The static polarizability anisotropy of the Oz-type oxygen in the
tetragonal phase is expanded in a power series in the spontaneous
polarization, and the molecular-model free energy function for
the clamped crystal is derived and compared to the experimental

function. An internal check on this model yields (dB/dT) = 5.6 x 10-15
-15

(cgs), compared to the experimental value, 4.5 x 1077,
A zero-temperature calculation based on this model yielded a

spontaneous polarization and Ti shift of 59,600 esu and 0,15-0,20 Z,
respectively, canparsd to the experimental data at room temperature,
77,000 esu and 0.16 A. Approximate zero-temperature calculations of
the same nature are performed for PbTiO3, CdTiO3, SrTiO3, and CaTiOj
using data extrapolated fram the BaTiO3 case. In this fashion the
expected Curie points are ordered as follows with respect to decreas-
ing temperature: PbTilz, BaTil3, CdTily, SrTil3, and CaTily, which
is the experimental order.

Tt is shown that a molecular model of BaTil3 consisting simply
of Ti and 05 linear dipole chains at 0°K represents the best approx-
imation to the actual crystal at room temperature. A calculation
based on this model yields 72,000 esu and 0,15-0.20 A for the spon-
taneous polarization and Ti shift, respectively, and the energy
density plot for this model is practically identical to that for the

camplete molecular model. v !ﬁ
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I. INTRODUCTION

The theoretical approaches to an understanding of the ferro-
electric nature of BaTiO3 have thus far been concerned with three
distinct but complementary aspects of the phenamnenon. The pheno-
menological theory of Devonshire @), (2) » fashioned along the
lines of similiar theories of Rochelle salt by Mueller (3) and
Cady )
material in a power series of two sets of independent variables
(e.g., polarizations and strains, polarizations and stresses),
and assuming that this single function applies to all the various
phases of the material., By examining the behavior of certain of
the expansion coefficients the behavior of others can be inferred,
and in this fashion Devonshire has been able to account for the
dielectric, elastic, and piezoelectric properties of BaTiO3 through
three'phase changes, These phenamenological free-energy expansions

, consists of expanding the free-energy function of the

provide the touchstone for the discussion of the experimental data,

and the data now available indicate that a single function is suffi-
cient for the description of BaTiO3 in the cubic, tetragonal, and
orthorhanbic phases.,

The various molecular theories of BaTiO3 have dealt, quantita-
tively and qualitatively, with the internal fields in this structure
and the energy states of the Ti** ion or the TiOg octahedron; these
theories are reviewed by Jona and Shirane (8), 1n particular, the
molecular theory due to Slater(6) considers a displaceable Ti ion
in a clamped (i.e., zero strain) BaTil3 unit cell and from the
classical partition function an expression for the local field at
the Ti site is obtained. This local field is then built into a
Lorentz analysis of the polarizations which includes the electronic
polarizabilities of the ions and the geametric Lorentz factors for




the perovskite structure. This analysis permits the external field
to be written as a power series in the total polarization, and from
this a free energy function is constructed for comparison with the
phenamenological function, The salient features of Slater's treat-
ment are the enhanced dipole-dipole coupling between the Ti and Oy
ions along the polar axis (see Fig. 1) and the relatively negligible
role of the Ba and Oy ions. ’
The recent approach taken by Cochran is to treat the onset of

spontaneous polarization as a problem in lattice dynamics. Cochran
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considers the possible existence of a long-wavelength transverse-
optical mode just above the Curie temperature. At the Curie point
the frequency of this mode vanishes without any other modes in the
crystal becaming unstable; it is shown that the "477/3 catastrope"
is a consequence of this vanishing., Since this "catastrophe" con-
dition is the mainspring of Slater's treatment, we see the inter-
connections of the various approaches. Capriciously enough, though,
the transverse frequency of interest according to Cochran's cal-
culations turns out to be about 1011 cps which is in the experi-
mentally difficult millimeter wavelength range.

There are two aspects of the Slater-type molecular model
which require further investigation, however, and it is the pur-
pose of this paper to examine these items in detail. First, this
model attributes the entire ionic polarization to the Ti ion, and
second, no allowance is made for the temperature dependent aniso-
tropy of the electronic polarizability of the ions.

It will be demonstrated using the neutron diffraction data
on BaTi03 that a displaceable-Ti model may be defined which con-
tains the essential dipolar features of the actual case and which
is mathematically identical to the Slater model. Then, the
recently determined anisotropy of the static oxygen polarizability
in the tetragonal phase will be incorporated into the internal-
field treatment along the lines of Slater, and the resulting free-




energy function will be campared to the experimental function to infer
the potential energy constants of the Ti shift to 6t order. These
potential energy data cambined with the polarizability data will be
used to compute the spontaneous polarization and Ti shift in BaTiOj
based on the model according to a virtual work principle, This cal-
culation will then be extended to other perovskite titanates (namely,
PhTi03, SrTi03, CdTi03, and CaTiO3) using data extrapolated fram the
BaTi03 data.

We shall have occasion in this study to employ experimental data
on BaTil3, and the question of Curie temperatures arises. Accordingly
we have adjusted the temperature scales on all data used such that the
Curie temperature is 116°C to coincide with the polarizability data,
reference (11). |

All mmerical calculations in this study were performed on the
IBM 1410 at the R, P, I. Conputing Laboratory, and Gaussian units
are used throughout.

II. THE DISPLACEABLE-Ti MODEL

The displaceable-Ti model (alternately known as "rattling model")
as first defined by Slater and later used by Kinase (8) and others
assumes that relative to the undisplaced lattice sites only the Ti
ion is displaced, the other ions remaining at their lattice sites.

This model attributes the entire ionic polarization to the Ti shift,
The objections to this model stem from two sources: first, Devonshire (2
has given arguments to show that the 0; ion is more easily displaced
than Ti; and second, the neutron diffraction data of Frazer et al ()
show that relative to the Ba ion positions the O, shift is 1-1/2 times
as large as the Ti shift in magnitude, and the O, shift equals the Ti
shift in magnitude,

These objections are really concerned with the problem of defining
what is meant by ionic polarization, both on a microscopic and a macro-
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scopic level. Considering the microscopic case, one is interested in
calculating the local field at the actual site of the displaced ion
and in relating this field expression to the undisplaced lattice sites
so that the symmetry properties of the lattice translation vectors
can be invoked. As an example, consider the field at an ith ion site
due to a jth ion of charge qj and zero electronic dipole mament when
these two ions are shifted by O; and Jj from their lattice sites,
respectively. The straightforward multipole expansion of the Coulamb
field at the ith site yields

n 2
3[( gS; -gr )- L] i - (g[o Zé’) g (1)
7

/l:;
L= fia s

where ,\./.?:"5 is the lattice translation vector between the it! and jth
lattice positions. Eq (1) shows that microscopically the ionic polar-
ization of a particular sublattice does not have a unique meaning but
rather depends on what other sublattice is considered. Moreover, for
i = j, Eq (1) shows that the bound charge density of the ionic polar-
ization vanishes., These results are not new, having been first emp-
hasized by Takagi (10), but the multipole expansion above is sane-
what simpler. It is clear, then, that the microscopic local field
definition involves relative rather than absolute shifts,

In view of this result we shall re-define the displeaceable-Ti
model as one which ignores the relative shifts between the Ba, O,
and Op, sublattices and considers only the relative shift between the
Ti and Oz sublattices. There is same experimental justification for
such a model since the neutron diffraction data show the 05 and O

sublattices shift approximately as a unit., These diffraction data
indicate a relative shift between the Ba and O sublattices which our
model ignores, but we are encouraged in this instance by Slater's
calculations which show that the Ba role is small, We will now em~
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pirically show that this model reproduces the local electric fields
at the ion sites in BaTilO3 quite satisfactorily by calculating those
fields according to both this model and the actual case, using the
neutron data. Before doing this, however, we can camplete the above
discussion of local fields at displaced sites by noting that to the
usual order of approximation the electronic dipole interactions in-
volve lattice sites rather than displaced sites as shown in a pre-
vious paper (11),

Turning to the local fields calculations, it will be convenient
to employ a numerical designation for the ion types in the BaTiO3
unit cell, and Fig.l is a schematic drawing of the unit cell in the
tetragonal phase with this arbitrary ion designation. Letting Tij
be the geametric Lorentz correction between ith and jth sublattices
(e.g.y T12 = 30,080 + 47/3), the local field at the ith ion site

isgivenby(u)
N 71;€
- = . 7 i e . - ‘-] ‘:/} vos (2)
£; ijjt@+ (-2 =125

where Py is the electronic polarization of the jl‘:h sublattice,
(z5-2z1) is the relative shift between the jth and ith gublattices,

nje is the effective ionic charge of a j™ type ion, and ‘1‘7“ is

the unit cell volume. The Op; and Op, ions are, of course, equivalent
(#3 and #5) but the choice of 5 sublattices has the convenience of
implying one ion type per unit cell. The procedure now is to invoke
the electronic polarizability relations and to solve Eqs (2) for the
Pj's given the zj's fram the neutron diffraction data. The details
of the calculation are well known (12), and the Tjj are obtainable
fram Slater's paper (6). The static electronic polarizability data
are taken fram the author's previous paper (A1) (e ignore here for
camparison purposes the oxygen polarizability anisotropy to be treated
in detail later)
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and the ion shifts relative to the Ba ion site are according to Frazer
et al (9

[+] o
z) = 0.06 A; 2y = -0.03 &; 23 = zg = -0,06 A

The n4 in Egs (2) are assumed equal to the full icnic charges (Ba%t
Ti* , 0-2), and the Egs (2) solved for the P:, The results of
these calculations are shown in Table I under the heading "Actual
Case". In this table the local fields, Ey, which are immediately
obtainable by the polarizability relations from the P, are also
given,

Similiar calculations are now performed for the model we have
defined above. According to that definition we have

Z= (z1-z2) = (z1-23) = (Zz1-2zy) = (21-25) = 0,15 A
Substituting in Eg (2),

< e 7+
brgr= 255 F + =2 3)
< 5
- <—|
E :2T.R -£22n7;
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However, Kinase (8) has shown that if one assumes that each ion
carries the same fraction of its full ionic charge, then

55’/757,3 i

R
3#1
so that Egs (3) can be written in the condensed form

5 (%)
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Now the Eqs (4) are identical to the field expressions developed
by Slater and Kinase with the distinction that Z is identified
here with the relative shifts between the Ti and O3 sublattices
rather than an absolute shift from the cubic position. The
solutions to the Eqs (4) are shown in Table I. The actual magni-
tudes in Table I are not of much real significance since we have
assumed full ionic charges; but the relative magnitudes are signi-
ficant for caomparison purposes.

We see fran Table I that the model reproduces the local field
at the Ti and O5 sites to better than 1% accuracy, and it is just
this fact which makes the model reasonable since the table also
shows that this Ti-O, interaction is the dominant interaction. And
as anticipated, the Ba role is quite minor., We therefore conclude
that as far as the microscopic field definitions are concerned, the
model we have defined works very well because the O framework shifts
more or less as a unit and because the highly polarizable Ba ions
play a rather negligible electrostatic role.

Table I

Local Fields and Polarizations in BaTiOz (esu)

P e e T o T

Actual Case 6 Model Case 6
Ton Py x 1073 Es x 107 Py x 1073 Ej x 107
Ti (#1) 7.45 2,59 7.53 2.61
Ob (#3’#5) 8.5 0'23 "00“’7 -0.008

Ba (#4) 1.26 0,036 ~4,37 -0.12




The above considerations apply to the microscopic definition
of the local fields, and we now consider the macroscopic defini-
tions. The electronic polarizations present no problem since the
question of a proper reference frame is not involved; for the ionic
polarization the proper macroscopic reference frame is the unpolar-
ized crystal. Using the neutron diffraction data we find that the
total ionic polarization is 66f (e/ 7" ) x 10-10 esy if either the
Ba or Op sublattice is taken as the macroscopic reference frame.
The quantity f is the fraction of the full ionic charge carried by
each ion and is assumed to be the same for all ion types. Based on
our defined model we find 60f (/7 )x 1010 esu, Since Trieb-
wasser (13) has pointed out that the X-ray data of Kanzig (1)
indicate that the Ba ions are not strongly affected by the ferro-
electric tbansitim, it is probably safe to take the Ba sublattice
" as the reference frame for the unpolarized crystal, and accordingly
we see that our model satisfactorily reproduces the ionic polariza-
tion in the macroscopic sense.

In conclusion, then, we will take, as our displaceable-Ti
model, that model which neglects the relative shifts between the
Ba, O, and Op sublattices and we shall assume that the total polar-
ization (electronic plus ionic) associated with this model is the
same as the measured polarization. The above empirical calculations
demonstrate that this model contains the essential ingredients of
the actual case and that the actual polarizations are reproduced to a
quite good approximation., It is seen, however, that the effect of the
model assumptions is to underestimate the total electronic and ionic
polarizations. We should point out that the physical difference be-
tween the model here and Slater's model is the reference frame involved,
and whereas the essential assumption to the latter model is that the
other ions do not shift, the essential assumption in our model is that
the total ionic polarization relative to the O framework is the same



as that relative to the unpolarized crystal.
ITI., OXYGEN POLARTZABILITY ANISOTROPY

Having examined the displaceable Ti model in same detail, we
now turn to the problem of reliable electronic polarizability data
which occupy such a central role in the Lorentz correction.

The static electronic polarizability data for the Oa ard Ob

oxygen ions in the [ 001 ] - direction and the (001)-plane have
been determined by the author(ll) fran the accurate refractive in-
dex data of Lawless and DeVries‘lS) for tetragonal Ba'I‘iOB. Arguments
based on the optical absorption and X-ray emission data of BaTiO3
were given to show that the large oxygen polarizability in materials
containing 'I‘;'LO6 octahedra is due to an exciton process involving ex-
citations fram the @cygen—zvorbitals to the empty Ti-3d orbitals
with degeneracy partially removed by the octahedral enviromment.
Based on the known internuclear separations in BaTiO3 at roan temp-
erature (9) canpared to the cubic phase, the anisotropic behavior of
the oxygen polarizability as determined fram the optical data was
attributed to Ba—Oa overlap in the (001) - plane and Ti-anverlap
in the [ 001] -direction. The 0, polarizability in the cubic and
tetragonal phases was considered the same (i.e., same temperature
dependence) because the enviromment (overlap conditions) of this
oxygen ion is not altered to the extend of the 0, enviroment across
the ferrcelectric transition,

These oxygen polarizability data for Ba’I‘:'LO3 were extrapolated
to zero frequency by camparison with the oxygen polarizability dis-
persion in SrTi0, and TiO,-rutile. The results of these studies
are shown in Fig. 2, and it is seen that these overlap effects re-
duce the O polarizability in the [001] - direction by about 15%
fram the extrapolated <X, value at roam temperature, The data in
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Fig. 2 were camputed based on the assumption that the temperature
dependence of the Ba and Ti polarizabilities are negligible.

We intend to incorporate the temperature dependence of do::.
into the Lorentz correction of BaTiO3 (the superscript [001]
may now be deleted since we are discussing the tetragonal phase),
and we note that this particular polarizability has a considerable
effect on the calculated ferro-electric behavior judging fram the
large Ti-0, dipole interaction shown in Table I. The explicit
temperature dependence of this polarizability is probably small
judging from the slight temperature dependence of A and Q/ob
in Fig. 2, and we shall therefore assume that this temperature
dependence of P, in the tetragonal phase arises entirely fram
the Ti-O5 overlap. Since this overlap is simply the relative
shift between the Ti and O sublattices, it follows that the O,
polarizability can be expanded in a power series of the spon-
taneous polarization, Pg. Moreover, since the BaTiO3 crystal
structure is centrosymmetric, it is clear that this expansion
will involve only even powers of Pg. Consequently, for reasons
which will become clear later, we shall express e, (= &z)
as

s
A () = 1+ #()

where

Ley=KRB*+ KB + K, B

(5)

(6)
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By ¥, we shall mean the oxygen polarizability at 120 C at zero
frequency, which fram Fig. 2 is 2,157 A, The choice of expand-
ing £ (Pg) to sixth order is to make this data correspond with
the experimental data on BaTiO3 (see below). The determination
of the expansion coefficients in Eq (6) is a simple problem in
least-squares curve fitting, since 0”2 is given in Fig, 2 as a
function of temperature and the spontaneous polarization is
given as a function of temperature by Merz(16) Canbining these
data we find

- -22 -32
K =3.30x/0 ”/ Ky== 3312007 K== (.53 /0 (7

We now have sufficient data to approach the Lorentz correct-
ion problem which we take up in the next section, but before leav-
ing this section we shall pursue these overlap-polarizability notions
a bit further in relation to the optical properties. It has been
demonstrated experimentally (17),(18) that the birefringence in
BaTiO3 is approximately proportional to Pg, and the usual theoretical
reason given(lg)fcr this spontaneous Kerr effect is the quadratic
electro-optic effect which relates changes in the index ellipsoid to the
strains of the unit cell, and the strains are proportional to P4 by
electrostriction, This explanation implies that the unit-cell strains
give rise to the birefringence. That this is not the whole story can
be seen fran the calculations by Kinase et al(20) of the birefringence:
these authors include the strains in the Lorentz correction factors but
assume isotropic polarizabilities, and they find that BaTiO3 should
be uniaxial positive with a birefringence of about 0.02, whereas, in
fact, BaTiO3 is uniaxial negative with a birefringence of about 0.06.
Therefore, birefringence arising from the temperature-dependent over-
lap conditions between Ti and 0, is strong
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enough to overcampensate the strain birefringence by a considerable
anount. As mentioned above, the calculations leading to Fig. 2
included these strains. The arguments leading to the expansion Egq
(6) imply that the overlap-polarizability birefringence ¢an. be ex-
pressed as a series in even powers of Pg, and so we may conclude
that the total birefringence can be similiarly expressed. But this
does not necessarily mean that the birefringence in these type
ferroelectrics will be proportional to Pg, as other terms in the
expansion may be required. In particular, in PbTiO3 the bire-
fringence first increases then decreases with decreasing tempera-
ture in the polar phase, in marked contrast to the BaTiO3 case,
although the c/a-ratio temperature dependence is very similiar

in the two materials (21). Kanzig has suggested that this behavior
in PbTiO3 is due to the increasing overlap of the ions with de-
creasing temperature (22), but the above discussion indicates that
this same mechanism is the dominant source of birefringence in
BaTiO3, also.

IV, THE LORENTZ CORRECTION IN BaTiO3

In this section we will construct a Gibbs free energy runction
based on the molecular model defined in Section II and incorporating
the O (Pg) function, Eq. (5); and in the following section this
model free energy will be campared with the corresponding experiment-
al free energy.

The theoretical free energy of interest, A, refers to the
clamped (zero-strain) crystal, and the independent variables are
temperature and the spontaneous polarization, Pg. This function
has the property (6)

E, = (SAP/Q'?)r

(8)
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where E, is the external field. Consequently, we seek the re-
lation E, (Pg) from the molecular model and in this way inte-
grate Eq (8) to determine Ap relative to the unpolarized crystal,
The groundwork for this discussion has been given by Slater(6)
and extended by Trietwasser (13?, and since we shall have occas-
ion to refer to these papers we shall let Eq(S20) refer to Eq
(20) in Slater's paper, etc.

The starting point for this discussion is the potential
energy expansion describing the Ti ion shift(x,y,z) from the
center of the oxygen octahedron (cubic symmetry), Eq (T16),

D= alxieyrs2) +b (Pryts2%) + 2 (xoryor 29+
sz ()/L2‘1+X22L+X1}/L) + a/'zxiyg_i_z #
d, [x-lyt+ 2#) +y= (e xt) + 2 +y*)]

(9)

This Ti shift is of course measured relative to the oxygen frame-
work. Assuming that the Ti ions are independent, the partition
function for the Ti displacements is found, and from this function
the local field at the Ti site is derived in terms of the Ti ionic
polarization, PZ'L’ relative to 0y« To fifth order Triebwasser gives,
Eq (T17)

£ - (Za?«/?.z)‘:l + £T(3b,+26,)/a%] P +

e[, » s RTEE ) #

(10)

(¢v7c/q¢) (P)°
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where we are interested in just one camponent of PI'L’ and where
q is the charge on the Ti ion and 7 is the unit cell volume
(equal to 1/N in Triebwasser's notation where N is the number
of ions per unit volume). In arriving at Eq(10) from Eg(9) the
quantities d, and d, have been assumed approximately equal to

c, an assumption which is justified below. This discussion so
far neglects the effects of the other ions; that is, the Lorentz
correction. To include the other ions we write for the local
field at the ith jon site

s
= S _— . (11)
£; Eu+z_,j7fj/?+/‘./?/(=//2‘.,.§

which is the same as Eq (4) except for the inclusion of the external
field, E_,. The Egs (11) represent a set of simultaneous linear
equation in the Pj's after the polarizability relations are invoked,
Pj Z Q/uT) ijj’ in Slater's notation., These eguations are
solvable by determinants and one obtains E, in terms of E, and Pi,
Eq (833)

E = Cs/ce)E, + 47 (C4/es) P’ (12)

However, Slater also shows that, Eq (S3u4)

P = (Cs /cs) E (13)

where C3, C,, and C; are constants defined in terms of the polar-
izabilities and geametric Lorentz factors, Eqs(S20), (S2u4), and
S (33). Consequently, substituting Eq(10) in Eq (12) and using
Eq(13), we obtain E5(Pg) as required.
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Now it is clear that the dZ(PS) relation is involved in the
solutions of Eqs (11), and it is found that the reciprocals of the
X.:'s are involved, In particular,

() = () [2+ #B)]

which is the reason we adopted the form Eq(5). Adopting Slater's nota-

tion for the Tij's in Egs (11) we find that the effect of the changing

0, polarizability with Py is to alter the quantities Cys Cy and Cg in
Egs (12) and (13) as follows
Cy — (s - (Ce +—X—/’,C7):ﬂ(€)
OLY)
54 .—_-—->C4_"‘ 677(’//?)
65——"‘>CS - Cif”?)
where we have defined o L 2
0, = PEo (Tau+t PXam 1) # 5K gt 5 & 71
s xS - o)
Cé’ = Xc>(f+f’)/l+é7yf&>' (1 %2792;>
(15)

Eqs (15) are given in Slater's notation (XOZ X34Xp= X,» etc)
and q and p are given in Eq (S12).

When the modified coefficients, Eq (14), are used in Eqs (12)
and (13) we obtain the Eo (Ps) relation with the effec t of the chang-
ing O , polarizability included, This function is then integrated accord-
ing to Eq (8), and we find for the free energy relative to the unpolarized
crystal,

A BT x=0)= ATIE® + B(T) 2 7;5/7—)/>é Coae




where
_z2mlsly  [C3 ﬁ_@ Cs T (3@ +2ﬂz)]k7’ (a7
pir)= T2t (0 J2E 4| £

Cs
/¢ 523 (3 2 G T 35'*2,3‘)] 7 a8
(2565 v () S

and

(3 |\ T

c(f)=(§‘§6-g( 4 5(5+07) &) e 7
()L b (P2 e+ T 0T ¢
fu(z)erfpr 5 U NaGrnral
[ )1(2%+T)(3€:jﬂz) Mdj£/ (19)

In arriving at Eqs (17) - (19) we have set q of Eq (10) equal to
ne and employed the following definitions:

A= a/n?, B= b /nt, [32= b2 /0¥, y= a/n
G =K [Cy¢5-Cs (c, + X C,)] /(€3 C5)

G = (T /k)K, +C3/es)KzE]
Cy = K, (Coly - CsCp)/ (G Cyls) (20)
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In Egs (17) through (20) we of course mean by Cys Cyy and Cg

the quantities defined by Slater. Eq (16) represents the model
free-energy function with the changing 0, polarizability in-
cluded through the ¥, , and & terms. IfG=0=0, the A (T),
B (T), and C (T) coefficients reduce to the same as those given
by Triebwasser, Eq (T18), allowing for the slight notational
differences. It is interesting to note that the Ps—dependence
of &¥; gives rise to a temperature dependence of C (T) which is
otherwise temperature independent in this approximation.
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V. COMPARISON WITH THE EXPERIMENTAL
FREE ENERSY FUNCTION

We now wish to campare our model free energy expression,
Eq(16), with the experimentally determmined function. However,
the experimental and thecretical constraints are different and
this must be taken into account. That is, the experimental sit-
uation is that of a "free" crystal (zero stress, XJ, whereas our
theoretical expression is for a "clamped" crystal (zero strain, x).
The prescription for this camparison has been given by Devonshire

1, ) and used by Triebwasser (13), so that the development here

does not vary in detail from Triebwasser's except for the mumerical
values,

The general starting point for this camparison is the free
energy in the tetragonal phase in terms of the spontaneous polar-
ization, PS, and longitudinal strains, X, ,yy, and Z,, relative
to the unpolarized, unstrained crystal,

1 X pe 1" pe
FeTx)= X R+ &, B+ ¢35, R+

2 G F Y+ A7)+ ij/y, 2 X Zat K ) #

9 Xa B> # 9 (25 +3,) B> @)

where Czl and CZPL,Z are elements of the elastic constant tensor

and where we are interested in only one camponent of P_« The
temperature dependence in Eq (21 ) is contained in the coefficients
of Ps’




The corresponding experimental function is given by
— I 4 f ¢
FIR Z‘X_:O):ﬁ)(f{;'"‘é ”@—/—é’—jﬂ K (22)

I X jf
where )(/ » é,, s and =m  are measured as functions of
temperature (see below). Comparison with Eq (16) shows that

Alr) = 31X
) X
B(7) = zé,, (23)

c(7) = 72,

so it is clear that we seek relations between the coefficients
of the stress-free energy, Iq (22), and the coefficients of the
F(R,7,x), E (2D,

Since BaTi03 is not piezoelectric in the cubic phase and
since our free energy functions are assumed to apply in all the
phases, it follows that X~ = Xx , however, this neglects
the effect of ordinary thermal expansion. If X is written
in the form of the Curie-Weiss law, ¥ = ¥, (7—70)

o)

then as Devonshire shows, Eq (10.22),

%ox: X, + o, (gn+ 2 ﬂ’2> (24

The corresponding expression in Triebwasser's paper (Eq (24)

is in error by a factor of 2 -- the first of Eqs (23) shows the
probable origin of this factor. For the coefficient of linear
expansion in Eq (24) ,QZ , We adopt the value from Joho's recent,
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' very accurate X-ray data on cubic BaTi03(23) fran 120°C-

200°C, 1.083 x 10'5 per degree. The quantities 811 and g}2
may be found from the relations developed by Devonshire (2 s I0

Gn+ 2gn = - (Q,+2Q2)(cE+26%)
In= gz = = (Q, - ()l - C2) (25)

where the Q's are elements of the electrostrictive tensor.

The necessary campliances have been measured by Bond at al(zu)

P_ 12 P - 12
Cl=207x/0", Cra =/40x/0
and the electrostrictive elements can be calculated fram the
spontaneous polarization data of Merzcls} and the spontaneous
strain data of Joho(23). This was done for four temperatures
around room temperature and the average values found were

0, = 117x/07% = -0 5p3x/077%

J Q/Z
Solving Eqs (25) we have

Ju=-0794, 2z= 0.333

These data differ samewhat fran Triebwasser's due to the older
Q-data used. Fram Eq (24), then

W= KE + 30850077 @

(2)

For the fourth-order coefficients, Devonshire gives,
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. Eq (2.8, ,
x
é”x = é,, - ;/l Q// - 4;/2 0/2

so that substituting the above data we have

X X - -2
é/ = + 2.75 x /O o

J (2]

The experimental data necessary for the camparison of the
6 order coefficients are not available, and for the time being
we will assume that these coefficients are approximately the same.
The necessary experimental data for the function Eq (22) are
given by Drougard et al (2%) as follows in c.g.s. (the only system
of units employed in this paper)

th

WE = 740x07° (7 303°K)
éx /2.0 x /0'/5/7'- 445 UK)

51— - 54 x,07%3

/1

"

x (28)
The temperature dependence of <“## is not given, but there is some
evidence that this coefficient is temperature dependent: Merz(16)
=23 4t 120° C for this coefficient, and Huibregtse
=23 at go C.

(26) give 72 x 10
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Fram Eqs (27) and (28) we find that at the Curie point

X -12 X _ -/2
é = -0.97x07" 5” = L7 x /0

'
and it can be shown(27) as a consequence of this that the
clamped crystal undergoes a second-order transition while the
free (actual) crystal undergoes a first-order transition, as
observed.,

Finally, cambining Egs (26), (27), and (28), we have

A(T)= 3.7/5x/07° 7 — /422 x /0" %

-42
R(T)= 4.50x /™7 = /327 x/0

C(T)-: 9)(/0“23

(29)

Eqs (29) are now cambined with Eqs (16) through (19)
using the auwxiliary definitions and polarizability data Eq (7);
the static electronic polarizabilities quoted in Section II are
employed, and the unit cell volume is taken fram Joho's data at
120° C, 64,45 x 1072% a3, This canparison allows us to solve
for the modified force constants, & |, K, . é . and d’ :
however, Eqs (29) represent five equations whereas we have four
unknowns. Consequently, following Triebwasser, we shall use the
dB/dT equation as a check on the calculations.,

These calculations were performed for two cases: a so-
called "Anisotropic Case" and an "Isotropic Case", where for
the latter case T, and U were set equal to zero in Egs (17)

through (19) and this of course amounts to letting the 0,

{
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_polarizability be isotropic and equal to the 0b value, The
results of these canputations are shown in Table II.

Table II

Modified Force Constants for the Ti Shift

(Cocho)
Anisotropic Case Isotropic Case(a)
e 1.05 x 105 1,05 x 105
s -8.63 x 1020 -1.31 x 10%°
yi% 1.65 x 10% 3,75 x 102
' 3.71 x 10°° 4,59 x 10%%
(ap/ar) 5,63 x 107° 0,046 x 1071°

(@) optained by setting T=7; = O in Egs (17) trough (19)

(b) 0—15

Experimental value: 4,5 x 1
The value for { for the Anisotropic Case is fairly in-
sensitive to which of the three ervalues quoted above is em-
ployed; the value at 8° C was selected, 72 x 10723 cgs, for
calculating in Table II for both cases. To test the sensi-
tivity of the Anisotropic-Case results to the expansion coef-
ficients, Fq (7), a fourth-order fit to Eq (6) was performed
and the resulting coefficients used in Eqs (17) through (19).
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The results were the same as for the sixth-order fit to within

a few percent (/5 = - 9,02 x 102, = 1,71 x 102, = u.u6 x

1038, (aB/dT) = 6.47 x 10%° for the fourth-order fit).

Canparing the results in Table II we first note the good
agreement of (dB/dT) for the Anisotropic Case with the experi-
mental value, whereas for the Isotropic Case there is a dis-
crepancy of two orders of magnitude. This agreement provides
a valuable internal check on the molecular model and on the
assunptions used, and underscores the importance of including
the polarizability anisotropy.

Fram Table II, the effect of theﬂ&(Ps) function is to
"soften" the potential energy curve, & , for small displace-
ments; i.e., [5,, for the Anisotropic Case is smaller than
the corresponding value for the Isotropic Case, In neither
case, however, does ¢ have a minimun other than the origin.
The reason for this alteration in ﬂ5 is due to the decreased
polarizability of 0, with the Ti shift. Consequently, for
an equivalent Ti shift, the resulting polarization energy
for the Anisotropic Case is larger (smaller negatively) than
for the Isotropic Case, and correspondingly the value of
which balances the negative polarization energy needn't be
as large for the former case as for the latter,

Regarding the temperature dependence of C (T) in Eq
(19) we find on substituting the appropriate quantities, dC/dT =
0,53 x 1072%, whereas the experimental data quoted above in-
dicate dC/dT~ -10"2%, This discrepancy is sign probably or-
iginates fram the fact that ‘éf__was not corrected to the zero-
strain value due to insufficient data. Additional experimental
data is needed to clarify this situation. Moreover, the pro-
cedure for treating the experimental data accordingto Eq(22)
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has been to assume that this sixth-order coefficient is temperature-
insensitive (27) .

In this section we have campared the free energies from the
model and fram experiment and found that the model defined in
Section II represents a good approximation when the changing polar-
izability of Oa is included in the Lorentz correction. In a cer-
tain sense, however, we have been dealing with numeralogy here,
and in the next section we will consider a zero-temperature calcul-
ation of the spontaneous polarization and Ti shift. This calcula-
tion will be based on the molecular model we have defined and will
minimize the poential energy of a BaT:LO3 unit cell using the data
we have developed in this and preceding sections,

Vi. A MINIMUM ENERGY CALCULATION

A test of the displaceable-Ti model and the associated
numerical constants determined in the previous section is pro-
vided by a zero-temperature calculation wherein we minimize the
potential energy per unit cell volume taking account of the
detailed Lorentz corrections at all the ion sites,

Limiting ourselves to Ti shifts along the z-axis to
correspond with the tetragonal phase, the potential energy per
unit volume to be minimized is given by

l 2 4 6) 1 p/ =y (30)
U-U’= ZT(dZ +5 2 +C£’)—27,DE,-—2_3_ RAE;
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The last term in Eq(30) represents the total electronic polar-
ization energy per unit volume, since(ze) dU = -pdE, and u°
is the unpolarized energy density. The factor 1/2 in the
third term arises from the fact that in the absence of an
external field we must count dipole interactions once, not

twice. Invoking the polarizability relations, P, = el /2‘)}:
and writing z = TP‘/m, Eq(30) becames,

U0 = (el @+ 4.(%) )+ df/?/e)"'/P) ‘]

S
, < ( R d(z:
= (20, )PP - % 2 a7 B - f
( ,J0h 2 Loty S ) j,+}(/;’) (31)

wherec, K, ,» and { are the modified force constants discussed
in the previous section, and we have used EqQ(5) in the last temm
of Fq(31).

Consider the integral in Eq(31) representing the Oa electronic
polarization energy. It is clear fram the discussion in Section

IV that E, may be written in terms of PS as

2

F,=A,F +a, P>+ a, B (32)

If Eqs (6) and (32) are substituted in this integral and if the
denaninator of the integrand is expanded in powers of P oy we find
after integrating that the resulting terms can be arranged to a
very good approximation as

(L) (-t R-FK BTk RT) o
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where K, is defined by Eq(6) and
Ko= 3 (k- KE)

2 2
KgI: E(K; +K3'2/(:K2) (31)

The form Eq(33) has the advantage that 2y 48, and iﬁ of Eq (32)
are not involved, and the approximation involves 6 order
terms (i.e., to fourth order in PS,Bq(33) is exact),

The energy per unit volume, u-uo, is minimized as follows:
for a given value of Pi, Eqs (4) are solved for the Pj and for
E, using the polarizability relations, and from these solutions
P is found. These quantities are substituted in Eq (31) using Eq

(33) to determine u-u®., A new value for u~u® is obtained by per-
turbing P!

1 and in this fashion the minimun energy is found by a
relaxation technique on a digital machine, In solving Egs (4)
the DfZ(PS) relation Eq (5) must be employed, and for convenience
in the numerical calculations it is desireable to reformulate this
relation as%(Pi). The details of this reformulation will not be
displayed since it is clear from Eqs (13) and (14) how this is to
be done,
These calculations were programmed using the Isotropic-

Case and Anisotropic-Case data in Table II. For the former

case, the f (Ps) function was of course set equal to zero. Fram
the discussion in Section II, there is a third case of interest,
alsoj; namely, the case which neglects the Ba and Ob polarizations
and considers only the linear dipole chains of Ti and 0‘_:1 along

the polar axis. For this case, thec;andf, polarizabilities

were not set equal to zero in fomulating@/;( E )frcn o (f?),
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1t rather the Py, Py, and Pspolarizations in Eqs (4) were set
equal to zero in the relaxation technique., This third case was
also programmed using the Anisotropic-Case data, and the results
of these calculations are shown in Table III.

Table III

Zero-Temperature Approximation of
Tetragon BaTiO3

Isotropic Case Anisotropic Cases
(Ba,Ti,0,,0,) (Ba,Ti,04,0p) (i, 0@
P, (esu) 667,000 59,600 71,700
P3/P 37.8% 53.2% 4l ,2%
S
P, /P 59.6% 58.L4% 50.2%
P,/P -.07%  -B6.6% 0
s
P,/P, -3.6% -5.3% 0
123
[*]
nZ,A 3.39 0.422 0,425

(@ optained by setting /2 = /7 = /2 = O.

The experimental value of the spontaneous polarization in
the tetragonal phase ranges fram 55,000 to 78,000 esu, being
about 77,000 esu at roam tempera ,(16) Therefore, the
Isotropic Case calculation in Table IIT as an order of magnitude
too high, but the Anisotropic Case data agree quite well.
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Moreover, the latter data represent a good approximation to the
roan-temperature behavior since the discussion in Section II
shows that the model underestimates the total polarization by
about 25%. If the (Ba,'fi,oa,ob) P, for the Anisotropic Case is
corrected for this underestimation we find 79,000 esu,

The neutron diffraction data of Frazer et al(g) mentioned
in Section II show that experimentally Z is about 0,16 2 at
roan temperature., To campare our calculated data with this
value we require n, the number of electrcnic charges on the
Ti ion. Kinase and Takahashi(zg)have developed a quantitative
molecular theory for the spontaneous deformation of BaTiO3 accord-
ing to the Slater displaceable-Ti model, and these authors find
good agreement with the measured deformation properties of the tet-
ragonal phase if n is taken as 2.12, Alternately, Eqs (4) can be
solved for f (defined in Section II) by using the known polarizabili-
ties, unit cell volume, ion shifts relative to Ba ( or Ob)’ and the
spontanecus polarization, all at roam temperature. This calcula-
tion, which assumes f to be the same for all ion types, was carried
out by an iteration procedure on a digital machine, and it was
found that n = 4f = 2,80. It is not surprising that this value
of n is samewhat larger since the calculation employs smaller oxygen
polarizabilities (infinite wavelength) campared to the previous
isotropic oxygen polarizability(S). Fran Table III, then, we find
Z =0.15 - 0,20 Z for the Anisotropic Case using the above n-values,
whereas for the Isotropic Case,~1.53u

Therefore, there is excellent agreement between the results of
these calculations for the Anisotropic Case and the experimental data.
It is reasonable to ask vhy this clamped crystal approximation at
0°K represents the actual crystal at roan temperature so well. There
are two reasons for this in addition to the electrostatic arguments
given in Section II. First, the strain of the unit cell introduces



-30-

additional ionic polarization (regardless of the reference frame) and
at the same time decreases the Lorentz correction at the Ti and O,
(11) , thus decreasing the electronic polarization. Consequently,
there is some cancellation between these two effects. Secondly, the
strain energy terms in Eq (21) (the last four terms) when evaluated
using roam temperature data are seen to contribute negatively to

F (PS,T,x), and so there is same cancellation between these strain
energy terms and the positive energy terms that depend linearly on
temperature (e.g.,)@f 7"§<§1:c). The physical reason for the decrease

sites

in the internal energy arising fran the strain terms is due to the
slight volume increase in going fram the cubic to the tetragonal phase(za)'
Therefore, the electrostatic and energy differences between the clamped
crystal at 0°K and the actual crystal at room temperature tend to cancel
and the former case represents a good approximation to the latter case.
From Table III, it is seen that the (Ti ,Oa) Anisotropic Case con-
tains the essential ingredients of the phenamenon, and interestingly
enough represents a better model than the (Ba,Ti,Oa,Ob) case because
by neglecting the Pjand P, polarizations the spontaneous polorization,
P, is not underestimated as in the latter case,
On the basis of the results in Tables IT and III we conclude
that the incorporation of the temperature-dependent overlap effects
onQQbrings the calculated results into very good agreement with the
experimental data on BaTiO3. Our picture here of ferroelectricity in
Ba'I‘:i.O3 is one explainable in terms of classical point-dipole theory
which includes the envirormental sensitivity of the electronic polar-
izability of the ions. According to this picture, the ion in the
12-fold coordination position (e.q., Ba in BaTiOa) plays a relatively
minor role electrostatically, its major role being to determine the
linear dimensions of the TiO6 octahedron and consequently to affect
the oxygen polarizability and the ease with which the Ti ion may
shift fram its 6-fold coordination position.
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The validity of these ideas may be tested by extendlng the
calculations in this section to other perovskite titanates to

see if sane underlying unity may be found in the dielectric pro-
perties of this class of materials.




SOME PEROVSKITE TITANATES:

PbTi0,,BaTi0, ,SrTi0, ,CdTiO;, AND CaTiO

3 3

The striking success of the displaceable-Ti model and the
associated calculational methods employed in preceeding sections
encourages the extension of these notions to other perovskite
titanates. In this section we will consider minimum-energy calcu-
lations of the type used in the previous section for the Pb-, Sr-,
Cd-, and Ca- titanates, and the necessary force-constant and polar-
izability-overlap data for these materials will be approximated
from the BaTiO3 data above. We will assume in these estimates that
the only differences between these titanates and BaTiO3 are in the
size of the oxygen octahedra in the unpolarized state and in the
polarizability of the cation in the Ba site. Furthermore,owing
to a lack of accurate optical data on these titanates, we shall
assune that the "cubic™ oxygen polarizability is the same as in
BaTio; (% in Eq(5).

First, let us see how the necessary force constants, «* ,

/Z,, and (" , may be approximated for these titanates, For an
ionic crystal the Born treatment as given by Fowler(so) of the
potential energy of two ions of charges q1 and g, a distance R
apart is assumed to be of the form

D= j:jL//% - w/RE + A /R7
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(35)

representing the Coulomb, Van der Walls, and repulsive inter-
actions, respectively., The form of Qé in Eq (9) is obtained

from Eq (35) by summing over a sufficient mumbers of nearest
neighbors, and by introducing the lattice translation vector, Ry
and the shift of the ion in question from its equilibrium posizzbn,




' T} 8Bey restricting shifts to be along the z-axis, the Ti-Og
separation is wr'ittenR=Roi' Z for the 04 ion at + R, re-
spectively. The resulting expression is then expanded in powers
of (Z/Ry) to obtain @, Eq (9), Consequently, we may approximate
the modified force constantX for a titanate other than BaTiQ,
saya”, aso’2 ot (a/a')?, vhere a and a' are the cell constants
for BaTiO3 and this other titanate, respectively. This approx-
imation amount to retaining only 1St order terms in the quantity
(a-a') /a' (£ .06); comspond:‘ng1y.ﬁ,’'=~ (4 (asa")* and d/"—:

ya/an®.

Now by the same token, the coefficients K/ J Kz sand K 3
in Eq (6) may be approximated in the same fashion for same other
titanate since as may be seen fram Eq (13)the expansion Eq (6) is
essentially an expansion in powers of Z.

In order to adjust the BaTiO3-data to these other titanates
we require cell constant data. These data are known‘?!) and are
sumarized in Table IV, CdTiO3 and CaTiO3 (which is the mineral
perovskite) are orthorhambic and are usually assigned a multiple
unit cell. The data in Table IV show that assuming a cubic unit
cell is a good approximation for these materials. Combining these
data with Joho's data(23) on cubic BaTiO3 ( a = 4.002 X), we ob-
tain the modified force constants (“:/2’,‘, ¢’ ) and the &7 -
polarizability coefficients (K,,Kj,K; ) for each of the four
perovskite titanates other than BaTiO3., In addition, the unit
cell volume which also enters the calculations, Eqs (30), etc.,
is calculable from the Table IV data, namely a3(cra).

w33-
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Table IV

Perovskite Titanate Data (20°C) (a)

Material Symmetry a =b (R) c/a Angle between
a and c -Axes

PbTiOg Tetragonal 3.905 1.3C2 -

SrTiO4 Cubic 3.905 - -

CdTiO3 Orthorhambic 3,791 1.004  91°10'

CaTiO5 Orthorhanbic 3.827 0,999  90%0’

(a)

Taken fram reference (21).

The Oﬁ-polarizability data are obtained as follows:
the Sr polarizability was determined in a previous paper(1l,
1.59 ?\3 3 the Ca and Pb values are taken fram the article by
Tessman et al(3l) as calculated fram the refractive indices
of CaCl, and PbCl,, 1.06 and 4.79 83, respectively; the Cd
polarizability is taken for CdF, fram this same article, 1.75 XB.
We now have sufficient data to use in the same machine pro-
gram written for the calculations in Section VI. For caomparison
purposes and in view of the approaximate nature of these calcula-
tions, only the energy density curves for these titanaiecs were
canputed, and these curves are shuwn in Fig. 3. The energy density
curve for BaTiO3 fram the previous section is also shown, and in
addition the erergy density curve corresponding to the (Ti,0,)
Anisotropic Case for BaTiO3 is also shown in Fig. 3 (dashed curve).
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Fran Fig. 3 we see that at T.-Z 0%K all titanates shown
are ferroelectric in this approximation; whether or not this
is the actual case camnot definitely be inferred from Fig. 3
since at low temperatures the quantum-statistical effects must
be considered and these are not included in the determination
of the partition function in Section IV. The value of Fig, 3
is in the relative nature of the curves. Since the closer in
energy the polar and non-polar phases are, the lower the transi-
tion temperature expected, we would order the (hypothetical)
Curie points of these titanates from Fig. 3 as follows: Pb'I'iOB,
BaTiOg, Od'l‘i03, SrTiO3, and CaTiO3 with decreasing temperature.
Let us see what the experimental data indicate: PbTiO3 has a
Curie point at 763%¢32) . ang BaTiO, at 390%K (Fig, 2); CdTiOg
has been found to be ferrcelectric below 60°%k(33); the dielectric
constant of ceramic SrTiO; was reported to peak around 20-30°K
by Smolenskii33), although HuIn®*) found no such behavior down
to 1.3% (there is a question of sample purity and preparation
in this titanate(as)); and finally, CaTiO3 is not ferrcelectric
Consequently, the crude approximations we have employed in this section
succeed in correctly establishing the order of the transition tem-
peratures in this group of titanates. For curiosity's sake, the
same calculations were performed ignoring the dz(Ps) dependence
and using the adjusted data fram the Isotropic case, Table III,
These calculations ordered the transition temperatures as: CdTiOg,
CaTiO3, PbTiO3, SrTiO3, PbTiO;, BaTiOj with decreasing temperature;
practically the reverse order.

(27)
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VIII DISCUSSION OF RESULTS

The success of the displaceable-Ti model, defined in Section
IT and employed in following sections with the envirommental sen-
sitivity of the O, polarizability included, in predicting the pro-
perties of BaTiO, and in qualitatively ordering the Curie points of
PbTiO,, BaTiO,, SrTiO3, and CaTiO3 indicates that the nature of
ferroelectricity in the titanate perovskites as discussed in Section
VI represents a resonable approximation to the truth. The above
discussions show that the phenomenon is understandable in terms of
point dipole and ionic theory, and that unreasonable values for
the polarizabilities and/or effective ionic charges are not needed.

As concerns a model for possible future calculations, the
data in Table III and Fig. 3 indicate that the quite simple Ti-0,
model of BaTiO,, which neglects the B, and 0 polarizations, re-
presents a very good approximation to the actual crystal at roam
temperature, This model does not contain the objectionable feature
of the Ba,Ti +0,,0, model of urderestimating the total polarization,
and in addition, as can be seen from Fig. 3, the energy density
curve for this model departs only slightly from the complete model
curve at large Ti shifts, and merges with it at small shifts,
the critical Ti shift being the same for both curves.
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Anisotropic Oxygen Polarizability and the Lorentz Correction in BaTiO;}

W. N. Lawress*
Interdisciplinary Materials Research Center, Rensselaer Polylecknic Institute, Troy, New York
(Received 22 June 1964; revised manuscript received 29 March 1965)

The temperature dependence of the electronic polarizabilities of the ions in BaTiO, is incorporated in the
Slater-Devonshire theory under the assumption that the dominant contribution arises from the O, electronic
polarizability due to the large Ti-O, overlap along the polar axis. The temperature dependence of the O,
polarizability as determined from optical data is parameterized in the spontaneous polarization, and a
free-energy function for the clamped crystal is derived and compared with the (adjusted) experimental
free energy. An internal check on this comparison yields (dB/dT) =5.63 X 10715 cgs units, compared with the
experimenta) value 4.3X 107 (B is the fourth-order coefficient in the free energy). A minimum-internal-
energy calculation is performed for the clamped crystal polarized along [001], corresponding to the tetragonal
phase. This calculation illustrates the role of the O, polarizability in limiting the spontaneous polarization:
Using the O, polarizability anisotropy data, a spontaneous polarization of 59 600 esu is obtained; if the
isotropic oxygen polarizability in the cubic phase is used, 667 000 esu. Similar calculations are performed for
the clamped crystal polarized along [011] and [111], corresponding to the orthorhombic and rhombohedral
phases, respectively. The O, polarizability anisotropy data are used, and for the {011] calculation a spon-
taneous polarization of 33 300 esu is obtained. Tt is found that the Lorentz correction for the clamped
crystal corresponding to a [111] polar axis is not large enough to support a spontaneous polarization, but
that a shear of the unit cell of about 27’ is required to stabilize a spontaneous polarization along this axis.

INTRODUCTION

HE various molecular theories of ferroelectricity

in BaTiO; deal, quantitatively or qualitatively,
with the Lorentz internal fields in the perovskite
lattice and the energy states of the Ti** ion or the
TiOg octahedra; these theories are reviewed in the
book by Jona and Shirane.! In particular, the theory
due to Slater® considers a displaceable Ti ion in a
clamped (zero-strain) BaTiO; unit cell and from the
classical partition function an expression for the local
field at the Ti site is derived. This local field is then
used in an analysis of the inner fields including the
electronic polarizations, and this analysis permits the
external field to be written as a power series in the
total polarization; by integration, a free-energy ex-
pression for the clamped crystal is obtained. The

t Research sponsored by a National Aeronautics and Space
Administration research grant ; from a portion of a thesis presented
in partial fulfillment of the requirements for the Ph.D. degree in
Physics, Rensselaer Polytechnic Institute, Troy, New York.

* Currently a postdoctoral fellow at the Laboratorium fiir Fest-
korperphysik, ETH, Ziirich.

1F. Jona and G. Shn'ane Fmoelectnc Crystals (The Macmillan
Company, New York, 1962), Chap.

1. C. Slater, Phys Rev. 78, 748 (1950)

salient features of Slater’s theory are the enhanced
dipole coupling between the Ti and O, ions along the
polar axis (see Fig. 1 which is a schematic drawing of
the BaTiO; unit cell) and the relatively small role of
the Ba and O, ionsin the clamped-crystal approximation.

The phenomenological theory of Devonshire®4 con-
sists of expanding the free energy in a power series of
polarizations and strains, or polarizations and stresses,
and assuming that this single function applies to the
paraelectric and ferroelectric phases. By examining
the behavior of certain of the expansion coefficients,
the behavior of others can be deduced, and in this
fashion Devonshire has accounted for the dielectric,
elastic, and piezoelectric properties of BaTiO; through
three phase changes. These phenomenological free-
energy expansions provide the basis for treating ex-
perimental data, and, in particular, the free-energy
function for the actual crystal (zero stress) can be
adjusted to a free-energy function for the clamped
crystal for comparison with the molecular-model
calculations.

3 A. F. Devonshire, Phil. Mag. 40, 1040 (1949).
¢ A. F. Devonshire, Phil. Mag. 42, 1065 (1951).

-

\

1Y

it



A

A 962 W. N, LAWLESS

LEGEND AND NUMERICAL
DESIGNATION OF IONS

@ @ Ba {*4)

b @ )

@' '@ @ o, =2)
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@ o 3

@ 0y, (*5)

Fic. 1. Schematic drawing of the perovskite unit cell with
a numerical ion designation.

The molecular-model calculations for tetragonal
BaTiO; along the lines of Slater have been based on
the assumption that the electronic polarizabilities of
the ions are isotropic and temperature independent.7
However, there is recent evidence® that the electronic
polarizabilities of the ions in BaTiO; are altered be-
tween the cubic and tetragonal phases because of the
interionic overlap that accompanies the ion shifts in
the ferroelectric phase. It is found that if the Na-line
birefringence at room temperature is calculated by
assuming isofropic electronic polarizabilities (i.e., from
the cubic phase) and by including both the lattice
strain and internal sublattice shifts in the geometric
Lorentz corrections, a value of 0.0355 found; if the
internal sublattice shifts are neglected, 0.0242. The
experimental value for the room-temperature bire-
fringence, —0.056, indicates that the total anisotropy
of the electronic polarizabilities contributes the domi-
nant birefringence, —0.082, and outweighs the strain-
and-shift birefringence of 0.035.

The purpose of the present research is to include the
temperature dependence of the electronic polariza-
bilities of the ions in BaTiO; in the Slater theory, and
thereby to derive a free energy for the clamped crystal
for comparison with the adjusted experimental free
energy. This comparison will yield both the force
constants describing the Ti shift and an internal check
on the model and assumptions. Based on these derived
force constants, minimum-internal-energy calculations
will be performed for the clamped crystal polarized
along [001], [011], and [111], corresponding to the
tetragonal, orthorhombic, and rhombohedral phases,
respectively.

Since experimental data will be employed and since
the reported Curie temperatures for BaTiO; vary some-

what, the temperature scales for the data used have

5W. Kinase, Progr. Theoret. Phys. (Kyoto) 13, 529 (1955).
¢ S. Triebwasser, J. Phys. Chem. Solids 3, 53 (1957).
( “W. Kinase and H. Takahashi, J. Phys. Soc. Japan 10, 942
1955).
8 W. N. Lawless, Phys. Rev. (to be published).

been adjusted to a 116°C Curie temperature to coincide
with the polarizability data (Fig. 2).

I. OXYGEN POLARIZABILITY ANISOTROPY

The static polarizabilities of the O, and O, ions in
tetragonal BaTiO; are shown in Fig. 2, where ao,®V
and ao, [ refer to the O, polarizability perpendicular
and parallel to the polar axis, respectively. These data
were derived from the recent® Na-line measurements of
the refractive indices in tetragonal and cubic BaTiO,
and extrapolated to infinite wavelength based on
analyses of the dispersions of the indices of SrTiO; and
TiO, (rutile).® In the analysis of these BaTiO; optical
data, the longitudinal strain of the unit cell (¢/a—1)
was included in the geometric dipole coupling coeffi-
cients, and the electronic polarizability anisotropy was
attributed entirely to the O, ion; the reasons for this
procedure are as follows: First, as mentioned above, if
isotropic polarizabilities are used, then birefringences
of 0.0242 and 0.0355 are calculated if the effect of the
unit-cell strain, and the effects of the unit-cell strain
and the sublattice shifts, are included in the dipole
coupling coefficients, respectively. This means that
neglecting these sublattice shifts and attributing the
polarizability anisotropy entirely to the O, ion amounts
to assuming that the sublattice-shift birefringence of
0.0113 is balanced by the polarizability anisotropies
of the ions other than O,. This is also a necessary as-
sumption because the temperature dependence of the
sublattice shifts has not been measured, and, more-
over, only one polarizability can be deduced from the
optical data. Second, the largest alteration in the elec-
tronic polarizabilities is expected for the O, ion, since
the neutron diffraction data' indicate a large change

23
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FiG. 2. Anisotropy of the oxygen polarizability in tetragonal

BaTiO; at infinite wavelength. The superscripts [_001] and (001)

mean parallel and perpendicular to the polar axis, respectively.

9W. N. Lawless and R. C. DeVries, J. Appl. Phys. 35, 2638
(1964).
1 B, C. Frazer, H. Danner, and R. Pepinsky, Phys. Rev. 100,
745 (1955).
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in the Ti-O, separation between the paraelectric and
ferroelectric phases, whereas the O, and Ba bond
lengths are not appreciably altered. Consequently, the
ap, in the tetragonal phase was extrapolated from ao
in the cubic phase. The data in Fig. 2 are for the tem-
perature ranges 20-105 and 116-160°C; no optical
data were taken in the 11°C range below the Curie
temperature because of thermal-domain motion.? The
recent x-ray data of Joho! for the ¢/a ratio and the
unit cell volume of the tetragonal phase were used in
the analyses shown in Fig. 2.

We now consider the problem of incorporating the
temperature dependence of ao, in the Slater theory of
BaTiO; (the superscript [001] may be dropped since
we are considering the tetragonal phase where the
polar axis is the [001] direction). Since the shift of the
optical absorption frequency between cubic and tetrag-
onal BaTi0Q; is quite small,*®-® and since this absorption
is due to an exciton process involving the oxygen
polarizability, it follows that the dominant tempera-
ture dependence of the O, polarizability arises from
the effect of the Ti-O, overlap on the infinite wave-
length ao, ; i.e., from the Ti shift relative to the oxygen
octahedron. Consequently, if we select the oxygen
octahedron as the reference frame for writing the inner
field equations (see below), then the temperature de-
pendence of ap, may be parametrized in terms of the
spontaneous polarization P, as

ao,(P)=ao(1+K:P +KoP A+ KPS, (1)

since the spontaneous polarization depends on the Ti
shift. In Eq. (1), ao is the isotropic oxygen polariza-
bility in the cubic phase, and only even powers of P,
are involved because the perovskite structure is centro-
symmetric. The form of Eq. (1) is chosen to simplify
the integration of Eq. (3) below.

The coefficients K1, Ks, and K3 in Eq. (1) are now
determined by combining the ao,(T) data in Fig. 2
with the P,(T) data for the tetragonal phase; however,
the resulting ao,(P,) data are to be used in the clamped
crystal calculations. We shall approximate these ao, (P,)
data for the clamped crystal by combining the ag,(7)
and P,(T) data for the free crystal for the following
reasons. First, the optical data and hence the ao (7)
data are for the range 20-105°C for crystals displaying
116°C transition points, and so the «ao,(P,) data will
be for this range also. But the difference between the
free and clamped P, is greatest in the neighborhood of
the transition temperature and then decreases rapidly
below the transition, the reason being that the free
and clamped crystals undergo first- and second-order
phase changes. Second, the adjustment of the free P,
to the clamped P, is very sensitive to the electro-
strictive and compliance elements. Consequently, since
the ao,(P,) expansion does not involve the neighbor-

1P, Joho, Z. Krist. 120, 329 (1964).
1R, C. Casella and S. P. Keller, Phys. Rev. 116, 1469 (1959).

hood of the Curie point and since an adjustment of the

free crystal data is sensitive {o experimental data, this

approximation is in keeping with the other assump-

tions and approximations. Combining then with the

P,(T) data due to Merz,® we find, by least-squares

fitting,

K;=331X101, K,=-—331X10%,

K3=—6.53X10"%. )

II. LORENTZ CORRECTION IN BaTiO;

The nature of the Lorentz correction in BaTiO; has
been studied by several authors. In Slater’s treatment,?
the ionic polarization is attributed to the Ti ion, and
the local fields are written for the undisplaced ion
sites. Cohen" criticized Slater’s treatment in that the
local fields should be written for the actual rather than
the undisplaced ion sites. However, Takagi'® has shown
that only the relative sublattice shifts should be con-
sidered in the calculation of the inner fields, and
Kinase® demonstrated that if relative shifts are con-
sidered and if the ionic polarization is attributed to
Ti, then a problem mathematically identical to Slater’s
is obtained when the local fields are written for the
actual ion sites. Kinase assumed that each ion carries
the same fraction of its full ionic charge. One can go
further, however ; starting with Takagi’s equations and
allowing shifts of all the sublattices, it can be shown
that an eigenvalue problem of the Slater type for the
polarizations results, if the oxvgen octahedron is se-
lected as the reference frame and if the oxygen ions
are assumed to have the same ionic charge.!® It is not
necessary to assume that all ions have the same frac-
tion of their full jonic charges, and, moreover, the
oxygen octahedron is the only sublattice reference
frame that can be found in which the inner field equa-
tions have this prescribed form. Therefore, the ex-
pressions for the local fields given by Slater describe
these fields at the actual ion sites and are written
relative to the oxygen octahedron and involve the as-
sumptions that the oxygen octahedron shifts as a unit
and that the Ba ionic polarization can be neglected.
This first assumption is reasonable in light of the
neutron diffraction data,!® and a posteriori, the calcula-
tions for the tetragomal phase reveal the small role of
the Ba polarization. Consequently, adopting the Slater
formalism means using an electronic polarizability for
the oxygen ions.

We now consider incorporating the anisotropic polar-
izability data for O, in the Slater model of BaTiO;,
and, since the details of these calculations are given
elsewhere,!'2:5:8 we shall review the theoretical con-
siderations and state the results of our calculations. It

BW. J. Merz, Phys. Rev. 91, 513 (1953).

uM. H. Cohen, Phys. Rev. 84, 368 (1951).

13Y, Takagi, in Proceedings of the International Conference on
Theoretical Physics, Kyoto, 1953 (Science Council of Japan, Tokyo,
1954), p. 824.

16 H, Grinicher (private communication).
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will be convenient to employ a numerical ion designa-
ticn in what follows, and the schematic drawing of the
unit cell, Fig. 1, gives this designation.

Briefly, the Gibbs-type free energy for the clamped
crystal has the property that

Eo=(94,/8P)r, 3)

where E, is the average field in the medium; from the
molecular model theory Eo(P,) is obtained, which
allows Eq. (3) to be integrated for the free energy
relative to the nonpolar state. The partition function
for the Ti ionic polarization is obtained from a po-
tential energy expression for the Ti shift (x,y,2) relative
to the oxygen octahedron of the form (cubic symmetry)

=a(2 5+ 2)+ by (A 2) o (a+ 55 +a)
—F 2by (229 222+ ¥P2) + dyaty’s?
Fa[EP AP ()R] (@)

From the partition function, the local field at the Ti
site is derived in terms of the Ti ionic polarization Py’
relative to the oxygen sublattice; the electronic polari-
zations of the ions are included by invoking the gen-
eralized Lorentz equations for the local field at the
ith ion site,

5 f4x
Ei=E0+Z (?-I' Tij)Pj
7

Ax
+(§+T!'1)P1,1 i= 11 27 c 5’ (5)

where the T; in Eq. (6) are the geometric Lorentz
factors for the perovskite lattice polarized along [001] 2
(i.e., T11= T14=O, Tu—-_— 30080, T13= T15= e 15040, Tza
= Tzs—’: Tu-‘—"— T45= 4334, and T24= T35= —'8668, ac-
cording to the ion designation in Fig. 1), and the 4=
is the ordinary Lorentz correction. P; is the electronic
polarization of the jth sublattice, and the numerical
ion designation in Fig. 1 implies one ion type per unit
cell. Using the polarizability relations (Slater’s notation),

Pi=XiEi/4'7r:
XJ'=4'"15/75 (6)

where 7 is the unit cell volume, the Egs. (5) are solvable
by determinants, and, for the case of the nonlinear O,
polarizability,
X '=X71(1+ K\ P2+ KoP K, P.F)
=X+ f(P.)]. 0
These solutions are given by Slater:
Ey=(Cs/Co)Ex+-4x(Cy/Cs)Py; P{=(C3/Cs)P., (8)

where C,, Cy, and Cj; are defined in terms of the linear
polarizabilities and the geometric Lorentz factors. The
inclusion of the P, dependence of the O, polarizability,

Eq. (7), alters these coefficients as follows:

Ci;— Ci— (Ce+X1Co) f( L),
C4—>C4—C7f(P¢), (9)
Cs— CS“Csf(Pc) ’

where we have used the definitions

Co=pX3(X A 3pX i~ 1)+5X 43X 1,

—3pX(2¢+9)]1,
Cs=X3(p+q) (1+3pX )— (1+2pX5),

the quantities ¢ and p in Egs. (10) being 2.394 and
0.690.

When the modified coefficients, Eq. (9), are used in
Eq. (8), we obtain the Ey(P,) relation with the effect
of the changing O, polarizability included. This func-
tion is then integrated according to Eq. (3) and we
find for the free energy relative to the unpolarized
crystal:

A,=A(T)P2+B(T)PAMC(T)P.S, (11)

where
2xC 4 Ca 2ar CszT 3 1 2
A(T)=—i+(—) _ [w]kj" 12)
Cy? Cs/ & Ciéa
a\* 331 Cs\*ar C3C4'r
B = ( ) [(c) e Ce (C'+1)]
C3 11543 3 20’17’ 3 1 2 2
AR QT @
284& C5 82(1
c(r)= ( )—y+ (oo >( =

8 sC\* 7 2xC5Cy
+—!T1( );:BH_ . (02C9+62+C9012)

C5 )
Cs\? 203+-0? {3ﬁx+zﬂz
() )
/! 3 \ éa
C3 42073!7'1
+(—) = a9
Cs 84(1

In arriving at Egs. (12) through (14), we have set the
effective ionic charge of Ti equal to ne and employed
the following definitions:
a=a/nt, f=bi/nt, Ba=by/nt, y=c/nt,
o1=K[C3Cs— Cs(Ce+X1C1) 1/ (CCs) ,
01[Ko+CeK/Cs] K1(CCs—CiC)

9= s 9=

K a1CCs

(15)
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Also, the quantities d; and dy of Eq. (4) have been
assumed approximately equal to ¢, an assumption
which is justified below. Equations (11) represent the
free energy function with the changing O, polariza-
bility included through the o, and o, terms. If o:=02=0,
the A(T), B(T), and C(T) coefficients reduce to the
same as those given by Triebwasser® [Eq. (18)] allow-
ing for the slight notational differences.

This free-energy function is now to be compared
with the experimental free energy; however, the ex-
perimental constraint (zero stress) differs from the
theoretical constraint (zero strain), and this difference
must be taken into account. The details of adjusting
the experimental function to zero strain have been
given by Devonshire*# and used by Triebwasser,® and
these details will not be given here, other than to note
that Eq. (24) in Triebwasser’s paper is in error by a
factor of 2 [see Devonshire’s paper, Eq. (10.22)].
Certain experimental data are necessary for this ad-
justment, and the data used here that differ from the
data used by Triebwasser are the following: The coeffi-
cient of linear expansion is taken from Joho’s accurate
x-ray data on cubic BaTiO; from 120-200°C, 1.083
X10~% per degree!!'; the necessary elements of the
electrostrictive tensor were calculated from the spon-
taneous polarization data of Merz® and the spontane-
ous strain data of Joho! for four temperatures around
room temperature and the average values found were
(cgs units)

Qu=117X10"12, (Q,=—0.583X10~2.
The data for the experimental free energy function are
given by Drougard ef al.,'" and the static electronic
polarizabilities® used for Ba** and Ti** were 2.33 and
0.186 A3. The unit cell volume of BaTiO; at 120°C was
taken from Joho's data, 64.45 A3,

The adjusted experimental values found for A(7T),
B(T), and C(T) for use in comparing Eq. (11) are

A(T)=3.72X10-T—1.42X 10,
B(T)=4.50X10-5T—1.33X 1012,
C(T)=9X10-3,

(16)

Equations (16) are now combined with Egs. (11)
through (15) to solve for the modified potential energy
constants a, Bi1, B2, and . However, we have more
equations than unknowns, and following Triebwasser,
we shall use the (¢B/dT) equation as an internal check
on the model.

These calculations were performed for two cases: an
“anisotropic” and an “isotropic” case, where for the
latter case ¢; and o3 were set equal to zero in Egs. (12)
through (14) and this, of course, amounts to letting the
O, polarizability be isotropic and equal to the cubic-

17 M. E. Drougard and E. J. Huibregtse, IBM J. Res. Develop.
1, 318 (1957).
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TasiE L. Potential energy constants for the Ti shift (cgs units).

Anisotropic case Isotropic case*
a=a/n 1.05X 105 1.05X10%
Bi=b/n* —8.63%10% —1.31x 10
Ba=bs/nt 1.65X10% 3.73X10*
y=c/nt 3.7110% 3.4010%
(@B/dT)> 5.63X10™ 0.35x10-1

s Obtained by neglecting the P, dependence of the O, polarizability.
b Experimental value: 4,5 X105,

phase oxygen polarizability. The results of these calcu-
lations are shown in Table 1. To test the sensitivity of
the anisotropic case results to the expansion coefficients,
Eq. (2), a fourth-order fit to Eq. (1) was performed and
the resulting coeflicients used in Egs. (12) through (14).
The results were the same as for the sixth-order fit to
within a few percent (8;=—9.02X10%, 8,=1.71X10%,
v=4.46X10°%, and (dB/dT)=6.47X107%),

Comparing the calculated data in Table I for the
two cases, it is seen that the (dB/dT) value for the
anisotropic case is in considerably better agreement
with the experimental value than (dB/dT) for the iso-
tropic case; this agreement is a valuable internal check
on the model and assumptions employed.

From Table I, the effect of the P, dependence of the
0, polarizability is to ‘“soften” the potential energy;
that is, B, for the anisotropic case is smaller than for
the isotropic case. In neither case, however, does ¢
have a minimum other than the origin. The reason for
this alteration in ¢ for small displacements is that the
0. polarizability decreases with the Ti shift. Conse-
quently, for an equivalent Ti shift, the resulting polari-
zation energy for the anisotropic case is larger (smaller
negatively) than for the isotropic case, and correspond-
ingly the value of ¢ which balances the negative
polarization energy need not be so large for the former
as for the latter case.

Triebwasser’s treatment of the Lorentz correction
in BaTiO; consisted in performing the above calcula-
tions using the neutron-diffraction data for the sub-
lattice shifts; three cases were considered where, in
each case, the nonlinear ionic polarizability resulting
from ¢, Eq. (4) was attributed to a different ion
(Ti, Og, or Op). These calculations assumed the elec-
tronic polarizabilities to be linear and isotropic, and
the absolute rather than the relative sublattice shifts
were considered. Triebwasser found fair agreement for
the (dB/dT) calculated for each of these three cases,
but these results should be interpreted with caution
since only relative sublattice shifts should enter the
local fields, and moreover the form of ¢ in Eq. (4) is
valid only for a cubic environment, and the O, and O
ions do not have this environment. In fact, Triebwasser
finds the best agreement between the calculated and
experimental values of (dB/dT) for the case of the O,
ion.
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III. ZERO-TEMPERATURE APPROXIMATION
FOR TETRAGONAL BaTiO;

It is of interest to perform a molecular-model calcu-
lation for tetragonal BaTiO; wherein the internal energy
per unit cell is minimized for the clamped crystal; this
calculation will employ the polarizability data and po-
tential-energy data derived in the above sections.

The clamped crystal at 0°K should be a good ap-
proximation of the actual crystal for two reasons.
First, the strain of the unit cell introduces additional
ionic polarization and, at the same time, decreases the
Lorentz correction at the Ti and O, sites,® thus decreas-
ing the electronic polarization. Consequently, there is
some cancellation between these two effects resulting
from the lattice distortion. Secondly, the strain energy
terms in the free energy contribute negatively because
of the volume expansion at the Curie point, and there
is some cancellation between these terms and the posi-
tive terms which depend linearly on temperature.

Limiting ourselves to Ti shifts along the z axis to
correspond with the tetragonal phase, the potential
energy per unit volume to be minimized is given by

1 L
u—u°=-(a22+blz"—i—cz‘*)—%Pl'El—Z/ PdE;. (17)
T 3 0

The last term in Eq. (17) represents the total electronic
polarization energy per unit volume, and %° is the un-
polarized energy density. The factor § in the third
term arises from the fact that in the absence of an
external field we must count dipole interactions once,
not twice. Invoking the polarizability relations, P;
= (aj/7)E;, and writing z=7P,’/ne, where 7 is the unit
cell volume, Eq. (17) becomes

u—u°=;—[a (Py'Y-Ba(r /€ (Py Yy (/e (1))
5 T az [P d(EP)
—(7/2d)P,\Py—% 3 —Pp—— —, (18)
o 2rJo 1+f(P,)

where o, B1, and y are the modified force constants
discussed in the previous section, and we have used
Eq. (7) in the last term of Eq. (18). We may approxi-
mate the integral in Eq. (18) by noting that the local
field at the O, site is approximately proportional of
the spontaneous polarization, and so this last term in
Eq. (18) becomes

~—(a;E2/21)[1— 1K P2 —Y{(K:— K2)PA
—1(KP+Ks— 2K, K2)P,]. (19)

The energy density #—#? is minimized as follows: For
a given value of Py, the Egs. (5) are solved for the P;
and for E; using the polarizability relations, and these
solutions are substituted in Eq. (18) and (19) to deter-
mine u— u°. Perturbing P, yields a new value of 2#—u?,
and, in this fashion, the minimum value of »#—u? is
determined by a relaxation procedure on a digital com-

W. N. LAWLESS

puter. In solving Egs. (5), the ao,(P.) relation is of
course employed.

These calculations yield the electronic polarizations
and Py’ at minimum internal energy, and from P’
= (neZ)/r the equilibrium shift of the Ti ion relative
to the oxygen framework may be found, if 1 is known,
the number of effective electronic charges on the Ti
ion. Kinase and Takahashi have developed a quanti-
tative molecular theory of the spontaneous deformation
of BaTiO;, and these authors find good agreement with
the measured deformation parameters, if # is taken to
be 2.12. Alternately, the room-temperature neutron-
diffraction data and polarizability data, including the
nonlinear O, polarizability data, can be used to solve
for that value of # which yields the room-temperature
spontaneous polarization® 77 000 esu. In this case,
however, one solves for the ionicity of the crystal
whereby each ion is assumed to carry the same fraction
of its full ionic charge. This calculation was performed
on a computer which matched the ionicity and the
spontaneous polarization, and it was found that an
ionicity of 709, yielded 77 000 esu; consequently, for
Ti, n=2.80. It is not surprising that this value for » is
somewhat larger, since this calculation employs smaller
oxygen polarizabilities compared to the previous values
used in the literature.

The results of these calculations are shown in Table
II with the corresponding experimental data on tetrago-
nal BaTiO;. It is seen from Table II that the 0°K
clamped crystal model of BaTiO; that attributes the
ionic polarization to the Ti ion and accounts for the
nonlinear O, polarizability represents a quite good ap-
proximation to the actual tetragonal crystal; moreover,
the results in Table II lend validity to the data derived
in previous sections and the assumptions employed.

The same calculations leading to the data in Table
IT were also performed, ignoring the nonlinearity of the
0. polarizability [i.e., setting K;=K,=K;=0 in Eqgs.
(1) and (19)] and using the isotropic-case data of
Table I. It was found for this case that P,=667 000
esu and Z=1.5 A. These results reveal the sensitivity
of the calculations to the oxygen polarizability, since
a; and a3(70000 esu) from Eq. (1) differ by about
159, and indicate the incompleteness of any molecular
model of BaTiO; that neglects the nonlinearity of the
oxygen polarizability.

TasrLE 1I. Zero-temperature, clamped-crystal approximation of
tetragonal BaTiO; (numerical ion designation given in Fig. 1).

Quantity Calculated Observed
P, (esu) 59 600 55 000-78 000
Py'/P, 53.29, o
P,/P, 58.49,

Py/P, —6.6%,

P,/P, —-35.3% eee

Z,A 0.15-0.20» 0.14-0.18

* Calculated using an effective ionic charge for Ti of 2.12-2.80.
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IV. ZERO-TEMPERATURE APPROXIMATIONS
OF ORTHORHOMBIC AND RHOMBO-
HEDRAL BaTiO;

The results of the calculations for tetragonal BaTiO;
in the previous section suggest and encourage similar
calculations for the two lower temperature phases of
BaTiO;. On cooling through 5°C, tetragonal BaTiO;
transforms to an orthorhombic phase with the spon-
taneous polarization along one of the original cubic
{110} directions, and below —90°C a rhombohedral
phase appears with the spontaneous polarization along
an original cubic (111) direction.! The potential energy
data in Table I can be used to construct ¢ for each of
these two phases, and the nonlinear O, and O polariza-
bilities for these two phases are obtainable from Egs.
(1) and (2) by considering components of the Ti shift
along the x, y, and z axes.

A. Orthorhombic Phase

For the orthorhombic phase, we consider a clamped
crystal polarized along [011], and it can be shown that
for this case

(Ti) ortno=—3(Ts7)stet, (20)

where the (T;)ws correspond to the clamped crystal
polarized along [001] and were used above. Because of
this simple relation, Eq. (20), the local fields for
the tetragonal phase given by Eqs. (5) are correct for
this phase also; that is, using the (T;)ortno in Egs. (5)
describes the local fields at the actual ion sites for the
orthorhombic phase.

The clamped-crystal calculations for this phase were
programmed for the Ti shift along [011] in the plane
of the O ions, Fig. 1; @, was assumed isotropic and
the nonlinearity of a; and as was determined from Eqgs.
(1) and (2). These calculations are a direct extension
of the tetragonal phase calculations, and the results
are shown in Table III.

It is seen from Table III that the clamped-crystal
. 0°K approximation based on the molecular model and
employing the polarizability and potential energy data
yields results in good agreement with the observed
data. Moreover, these model calculations indicate that
the orthorhombic phase is the lower temperature phase

TasLE II1. Zero-temperature, clamped-crystal approximation of
orthorhombic BaTiQ; (numerical ion designation given in Fig. 1).

Quantity Calculated Observed
P, (esu) 33250 42 000»
P//P, 40.99%, e
Py/P, —11.09%
Ps/Pp 29.19,
Py/P, 8.9,
(X222 0.07-0.09 A 0.13 A*

s According to Merz (Ref. 21).
b The 0»1 and 0s2 ions are equivalent.
¢ According to Shirane (Ref. 18).
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compared to the tetragonal phase, since the calculated
spontaneous polarization for the orthorhombic phase
(33 250 esu) is lower than that calculated for the
tetragonal phase (59 600 esu).

These results for the orthorhombic phase lend addi-
tional support to the model and the data, and the can-
cellation effects in the free energy discussed above for
the tetragonal phase apply here also since there is a
volume expansion anomaly in the tetragonal-orthor-
hombic transition.

Ultimately, the model which attributes the ionic
polarization to the Ti ion works as well as it does for
the orthorhombic phase because the oxygen octahedron
shifts approximately as a unit,!® as in the tetragonal
phase.

B. Rhombohedral Phase

The clamped-crystal model of the rhombohedral
phase assumes a cubic cell polarized along [111], and
for this case we have

(T:'J')rhomb= 0 3 (21)

so that the Lorentz factors in Eq. (5) reduce to the
ordinary Lorentz factor, 4x/3(~4.2). For this case,
the Og, Op, and Oy, lons are equivalent, and Egs. (5)
are solvable by a hand calculation. However, when the
internal energy, Eq. (18), is minimized, for this case,
with the Ti shift along [1117, it is found that the
average Lorentz factor must be at least 5.1 for a mini-
mum to exist, using the appropriate potential energy
data and nonlinear oxygen polarizability data. That is,
these data indicate that the clamped crystal at 0°K
polarized along [1117] is unstable in the dipole
approximation.

To interpret this result, it is necessary to bear in
mind the reasons why the clamped crystal at 0°K is a
good approximation for the tetragonal and orthor-
hombic phases; namely, the strain polarization is com-
pensated by the reduced electronic polarization for
the strained crystal, and the volume expansion anomaly
gives rise to negative strain energy terms which com-
pensate the positive temperature terms in the free
energy. This is not the case for the rhombohedral
phase: There is a volume contraction associated with
the transition from orthorhombic to rhombohedral,1?-®
and the strain polarization is relatively much larger
because the geometric T; dipole coupling factors
vanish for this case.

Since these calculations show the rhombohedral
phase to be unstable in the dipole approximation, it is
of interest to carry the calculations to a higher approxi-
mation by including the distortion of the unit cell in
the T;; factors. This effectively amounts to including

18 G, Shirane, H. Danner, and R. Pepinsky, Phys. Rev. 105,
856 (1957). - :

1 H. F. Kay and P. Vousden, Phil. Mag. 40, 1019 (1949).

% G. Shirane and A. Takeda, J. Phys. Soc. Japan 7, 1 (1952).
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F16. 3. The role of the angular shear in stabilizing a spontaneous
polarization along [111] in rhombohedral BaTi0;.

quadrupole terms, since we shall now consider products
of electronic moments and ion shifts.

We may approximate the rhombohedral cell as a
pseudocubic cell with the original orthogonal axes each
sheared by a small angle ¢ so as to elongate the cell
along [111] which is the polar axis. Consequently, the
vector separation between an 7th ion at the origin and
a jth ion is given by

ri=ao (HmpHn) 1+ (m-+i--my)2
+nti+my)3], (22)

where the translation indices (I,m,n) locate the jth ion
relative to the ith ion in the cubic unit cell. The cell
constant is gq, and the small angle approximation has
been used.

Using this vector separation, we find for the geo-
metric Lorentz factors to first order in y,

(Tt'.i)rhomb

”2
S| 12 ——————4(T; ] 23
'I’[ “,mz.i)‘i (lz+m2+n2)5,2 J)M ( )

In deriving Eq. (23) we have neglected the cross terms
which do not come from the near neighbors. The sums
indicated in Eq. (23) are easily computed to an ac-
curacy of £0.01, and, by combination with the (T'¢;)et,
the (T'i;)momb are found. Table IV summarizes these
data. We first note from Table IV that the shear of the
unit cell appears to increase the Lorentz factors in
marked contrast to the tetragonal phase where the
longitudinal strain of the unit cell decreases these
factors.® In particular, a 19, strain for the tetragonal
phase decreases the Ti-O, Lorentz factor from 34.27
to 33.68 (ordinary Lorentz correction included), a
1.79%, decrease; from Table IV, a 19 shear increases
the Ti-O Lorentz factor from 4.19 to 5.59, a 33%
increase.

Before turning to the computations for the rhombo-
hedral phase, the question of the iomic polanzatlon
must be considered. We shall consider a “pseudo-

clamped” unit cell which has been elongated along the
[111] polar axis according to Eq. (22), but only the
Ti ion shift from the sheared position will be con-
sidered. That is, we will neglect the shift of the other
ions from their sheared positions. Consequently, the
relative shifts of the ions arising from the shear are
asymmetric about any ion position and sum tc zero
for the near dipole interactions (i.e., the quadrupole
ionic polarization terms in 2 sum to zero) The local
fields at the ion sites arising from the Ti ionic polariza-
tion Py’ are not correctly given by Eq. (5) for the
rhombohedral phase, since the form of Eq. (5) results
from the symmetry properties of the (7'i;)cet. Consider-
ing the relative shifts between the sheared and shifted
Ti sublattice and the other sheared sublattices, we
find that the local fields are given by

5 Mx
Es‘# 1= Z [’g"’*‘ (Tt'j) rhomb]PJ

2

Aar
+[—3‘+ (T ﬂ)rbomb]P Y, (24)

4x
El:zj [_’+ (le)rhomb]P — Py 1 Z _(le)rhomb ’

2 Ny

where #; is the number of effective ionic charges on
the jth ion, and the ratios #;/n; are assumed the same
as the ratios of the full ionic charges (i.e., each ion is
assumed to carry the same fraction of its full ionic
charge). In writing down Egs. (24), we have ignored
the ionic polarization resulting from the shear of the
unit cell, and instead the ionic polarization is attributed
entirely to the P,’; the reason for this is that relative
to the origin in Eq. (22) the ionic moments of the unit
cell associated with the shear cancel exactly.

Using the data of Table IV in Eqs. (24) and employ-
ing the appropriate potential energy data and the non-
linear o, a3, and a; polarizability data, energy minimi-
zation computations were programmed for several
values of ¢ ; the results of these calculations are shown
in Fig. 3 which indicates the spontaneous polarization
P, resulting from a given shear ¢.

It is seen from Fig. 3 that the shear of the unit cell
has a pronounced effect on the spontaneous polarization
along the [1117] direction and that this polarization
becomes unstable for shear values less than about 273

TasLE IV. Quadrupole coupling coefficients for the rhombohedral
unit cell (numerical ion designation given in Fig. 1).

4,4) (Té3)chomb/¥
91.3
(1,2), (1 3), (1,5) 140
74.6
2,3), (2, 5), (3 4), (4,5) 94.5
2 5 108

i L
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in this approximation. A shear of 30’ yields the ob-
served polarization® of 41 000 esu, and at this shear
value the self-consistent local field relations Eq. (24)
show that at minimum energy, the contributions of the
various polarizations are P/ P,=29.19,; P»/ P,= P;/ P,
=P;/P,=171.19,; P,/P,=17.99%,. These data indicate
a Ti shift of 0.056-0.073 A along the pseudocubic [111]
direction, for n;=2.12-2.80 electronic charges.

The computed shear of 30’ is in satisfactory agree-
ment with the x-ray value!® of &', considering the ap-
proximations and assumptions used. In particular, the
coefficients of the sixth-order terms in Eq. (4) were
assumed equal, and this assumption affects the rhombo-
hedral phase calculations more than the tetragonal phase
(x=y=0) or orthorhombic phase (z=0) calculations.

We also note from these data and the data in Tables
II and IIT that the Ba ion plays an increasingly more
important role in going from the tetragonal phase
(Py/P,=—5.39,) through the orthorhombic phase
(Py/P,=89%) to the rhombohedral phase (P,/P,
=17.99,). Consequently, the approximation of neg-
lecting the Ba ionic polarization becomes less valid
for these lower temperature phases. This may be seen
in Table III where the calculated value of P, is 209,
lower than the observed value, and this is probably
due, in part, to neglecting the Ba ionic polarization.
Also, the effect of including the Ba ionic polarization
in Fig. 3 would be to shift the curve to smaller shears,
since from Table IV the Ti-Ba quadrupole interaction
is quite large.

V. SUMMARY AND DISCUSSION

In the above sections, we have investigated the
polarization dependence of the electronic polarizability
of the oxygen ions in ferroelectric BaTiO; using data
estimated from the optical properties of tetragonal
and cubic BaTiO;. A free-energy function for the
clamped crystal was derived and compared to the
adjusted experimental function; it was assumed that
the ao,(P.) data for the free crystal could be used for
the clamped crystal in constructing the *clamped-
crystal free energy. Minimum energy calculations were
performed for the tetragonal, orthorhombic, and rhom-

1 W. J. Merz, Phys. Rev. 76, 1221 (1949).

bohedral phases using the potential energy data derived
from the comparison of these free energies.

The agreement between the calculated and experi-
menta) (dB/dT) values in Table I (anisotropic case)
indicates the importance of the polarizability anisotropy
of the O, ion in the tetragonal phase, and, in particular,
the results shown in Table II illustrate the role of this
anisotropy in limiting the spontaneous polarization in
tetragonal BaTiO;. The agreement between the cal-
culated and observed data for the spontaneous polari-
zation and Ti shift for the tetragonal, orthorhombic,
and rhombohedral phases indicates that these aspects
of ferroelectricity in BaTiO; can be understood in
terms of the point-dipole theory without invoking un-
reasonable values for the ionic charges or polariza-
bilities, if the polarizability anisotropy of the oxygen
ions is taken into account. The calculations also reveal
that the neglect of the Ba ionic polarization is a serious
defect of the Slater model for the orthorhombic and
rhombohedral phases.

The occurrence of ferroelectricity in solids presents
the opportunity of studying dielectric phenomena under
conditions which can be more closely controlled and
parameterized than in the case of paraelectric crystals.
Consequently, the various electro-optic effects can be
separated and studied individually, and the electronic
polarizability anisotropies deduced in this fashion from
optical data may then be used in studies of the low-
frequency ferroelectric properties. In this way, the
change in the electronic polarizabilities of the ions
with polarization, a central problem in dielectric theory,
can be investigated directly in ferroelectric crystals.
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